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ROLE OF CONDUCTIVITY I N  HYDROMAGNETIC STABILITY OF PARAILEL FLOWS 

by P h i l i p  R. Nachtsheim and E l i  Reshotko* 

Lewis Research Center 

SUMMARY 


The r o l e  of t h e  e l e c t r i c a l  conduct ivi ty  i n  t h e  s t a b i l i t y  of magnetohydro
dynamic channel f low with p a r a l l e l  magnetic f i e l d  i s  examined through exact 
numerical so lu t ion  of t h e  pe r t inen t  s ixth-order  system of disturbance equations 
throughout an extended range of magnetic Reynolds numbers. The r e s u l t s  ob
ta ined  ind ica t e  t h a t  t h e  conduct ivi ty  of t h e  f l u i d  a c t s  as a s t a b i l i z i n g  agent,  
as long as it i s  s m a l l ,  and as a des t ab i l i z ing  agent,  i f  it i s  la rge .  It i s  
concluded that  t h e  conduct ivi ty  reverses  i t s  r o l e  as a s t a b i l i z i n g  agent a t  a 
magnetic Reynolds number of order uni ty .  Examination of t h e  contr ibut ions t o  a 
disturbance energy balance equation shows t h a t  t h e  conduct ivi ty  a c t s  as a de
s t a b i l i z i n g  agent by s e t t i n g  up a time-independent Maxwell s t r e s s  that  has t h e  
same s ign  as t h e  v o r t i c i t y  of t h e  bas ic  flow. 

INTRODUCTION 

The hydromagnetic s t a b i l i t y  of laminar flows of e l e c t r i c a l l y  conducting 
f l u i d s  has been analyzed by many authors.  I n  p a r t i c u l a r ,  it has been shown 
t h a t ,  when a uniform magnetic f i e l d  i s  imposed i n  the  d i r e c t i o n  of t he  laminar 
flow, t h e  flow i s  always more s t a b l e  than  i n  t h e  absence of a magnetic f i e l d .  
This alinement of t h e  magnetic f i e l d  i s  e spec ia l ly  s i g n i f i c a n t  and w i l l  be the  
configurat ion examined herein,  s ince t h e  mean motion of t h e  f l u i d  is  not af
fec t ed  by t h e  imposed magnetic f i e l d ;  t he re fo re ,  t he  net  e f f e c t  of t h e  magnetic 
f i e l d  on t h e  s t a b i l i t y  of a given v e l o c i t y  d i s t r i b u t i o n  can be invest igated.  

Previous t reatments  of t h i s  problem have not made c l e a r  t h e  r o l e  of t h e  
conduct ivi ty  of t h e  f l u i d  i n  t h e  s t a b i l i t y  phenomenon. Previous inves t iga to r s
have considered two extreme l i m i t i n g  cases of t h e  hydromagnetic s t a b i l i t y  prob. 
lem; namely, t h e  s t a b i l i t y  of a f l u i d  of very low and very high e l e c t r i c a l  con
duct i v i ty. 

S tua r t  ( r e f .  1)t r e a t e d  t h e  case of a f l u i d  a t  a very low conduct ivi ty  i n  
a very s t rong  magnetic f i e l d .  H i s  r e s u l t s  ind ica ted  t h a t  t h e  magnetic f i e l d  
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s t a b i l i z e d  t h e  motion, bu t  h i s  t reatment  of t h e  problem involved seve ra l  
s implifying assumptions, p r imar i ly  t h e  assumed smallness of t h e  magnetic 
Reynolds number. These assumptions precluded any inves t iga t ion  of t h e  e f f e c t  
of t he  conduct ivi ty  alone on t h e  s t a b i l i t y  phenomenon. Velikhov ( r e f .  2 ) ,  on 
t h e  other  hand, t r e a t e d  t h e  case of a f l u i d  of very high e l e c t r i c a l  conduc
t i v i t y .  H i s  r e s u l t s  showed t h a t  t h e  minimum c r i t i c a l  Reynolds numbers were 
markedly g rea t e r  t han  a t  t h e  low values of t h e  conduct ivi ty  examined by Stuar t .  
This would l ead  one t o  be l ieve  t h a t  t h e  s t a b i l i z i n g  e f f e c t  of t h e  magnetic 
f i e l d  i s  enhanced as t h e  conduct ivi ty  i s  increased. However, Velikhov found 
t h i s  t r end  reversed a t  t h e  la rge  values  of t h e  conduct ivi ty  invest igated;  t h a t  
i s ,  an increase a t  these  high values  of t h e  conduct ivi ty  w a s  des t ab i l i z ing ,  
and t h e  minimum c r i t i c a l  Reynolds number f o r  i n f i n i t e  magnetic Reynolds number 
i s  below t h a t  obtained f o r  l a rge  but f i n i t e  magnetic Reynolds number. However, 
with Velikohov's s implifying assumptions, pr imari ly  the  assumed largeness of 
t he  magnetic Reynolds number, again no ind ica t ion  could be obtained of  when 
t h e  conduct ivi ty  reversed i t s  r o l e  a s  a s t a b i l i z i n g  agent. 

I n  t h e  present  r epor t ,  t he  r o l e  of t h e  conduct ivi ty  i s  c l a r i f i e d  by ex
amining t h e  s t a b i l i t y  problem between t h e  l i m i t i n g  cas'es of very low and very 
high conductivity.  This i s  accomplished by solving t h e  complete disturbance 
equations numerically without invoking the  s implifying assumptions made i n  
e a r l i e r  t reatments  of t h i s  problem. 

SYMBOLS 

Vector components with a numerical index r e f e r  t o  dimensional quan t i t i e s ;  
vector  components with a l i t e r a l  index r e f e r  t o  nondimensional quan t i t i e s .  

Mfven number, 

reference magnetic induct ion 

disturbance magnetic induction 

cr + i c i  

time ampl i f ica t ion  f a c t o r  of 

phase speed 

e l e c t r i c  f i e l d  

disturbance energy 

el e  c t r  i c  cur ren t  dens i ty  

wave number 

reference length  

disturbance wave 
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N 	 magnetic interaction parameter, aB2L/p& 

pressure 

magnetic Prandtl number, opov 

disturbance pressure 

Reynolds number, Yn_L/v 

magnetic Reynolds number, q 0 & L  

disturbance vorticity amplitude, cp" - CL2cp 

t time 


U velocity 


u, reference velocity 


u17 u2 disturbanee velocity components 


xl.'xz Cartesian coordinates, dimensional 


X, Y Cartesian coordinates, nondimensional 


CI dimensionless wave number, L k l  


disturbance vorticity 


disturbance electric current density amplitude, $" - a2$ 


permeability (vacuum value) 


fluid kinematic viscosity 


p + (Z* S)/2po 


disturbance total pressure amplitude 


I. P fluid density 

i 	 0 electrical conductivity 

disturbance stream function 

disturbance stream function amplitude 

disturbance vector potential 

disturbance vector potential amplitude 

3 



Subscripts :  

i imaginary p a r t  

r r e a l  p a r t  

c d i f f e r e n t i a t i o n  with respec t  t o  c 

c r  c r i t i c a l  

FOFMULATION OF PROBLEM 

The general  equations of magnetohydrodynamics a r e  t h e  equations of e lec
trodynamics f o r  moving media and the  Navier-Stokes equations modified t o  in 
clude the  electromagnetic body force.  For an  incompressible f l u i d  with a 
sca l a r  conduct ivi ty  t h e  governing equations a r e  ( r e f .  3) 

The kinematic v i s c o s i t y  coe f f i c i en t  v i s  taken t o  be a constant ,  and t h e  ex
cess  charge dens i ty  and displacement cur ren ts  a r e  neglected i n  t h e  preceding 
equations i n  accordance with the  usual  magnetohydrodynamic approximations. 

The steady flow under considerat ion i s  the  flow with parabol ic  ve loc i ty  
p r o f i l e  between pe r fec t ly  conducting p a r a l l e l  planes i n  the  presence of a con
s t a n t  imposed magnetic f i e l d  p a r a l l e l  t o  t h e  f l u i d  ve loc i ty .  

The so lu t ion  of t h e  s teady equations t h a t  s a t i s f i e s  t he  imposed conditions I 

i s  

, 

where B1 i s  t h e  constant imposed magnetic f i e l d  and 
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Ul = um(. - $) ( 7 )  

where 2L i s  t h e  spacing between t h e  planes and IFm i s  t h e  v e l o c i t y  a t  t h e  
center l ine  (x2 = 0). It i s  now propzsed t o  consider t h e  equations governing 
s m a l l  two-dimensional dis turbances u : (u1,u2,0), : (bl,b2,0), and p, which 
a r e  superimposed on t h e  s teady-s ta te  solut ion.  There i s  no loss  i n  gene ra l i t y  
i n  assuning that t h e  dis turbances are two-dimensional i n  nature,  s ince,  f o r  t h e  
problem under consideration, t h e  motion i s  always more s t a b l e  f o r  th ree-
dimensional than  f o r  two-dimensional dis turbances as pointed out by S tua r t  
( r e f .  1). This i s  t h e  analogue of Squi re ' s  theorem ( r e f .  4) es tab l i shed  i n  t h e  . 	 ordinary incompressible p a r a l l e l  f low s + t a l p i t y  theory.  Per iodic  s inusoida l  
dis turbances a r e  considered i n  which u, b, and p a r e  a l l  func t ions  of x2 
mul t ip l ied  by exp [ikl(xl - clt  I], where c 1  i s  the  complex phase ve loc i ty  and 
kl i s  t h e  wave number i n  t h e  xl-direction. Since k l  i s  always pos i t i ve ,  
t h e  dis turbances a r e  amplified or damped according t o  whether t h e  imaginary 
part of c1 i s  pos i t i ve  or negative.  If t h e  imaginary p a r t  of c 1  is  zero, 
t h e  disturbance i s  n e u t r a l l y  s t ab le .  The s t eps  leading t o  the  disturbance 
equations a r e  ca r r i ed  out i n  t h e  appendix. This procedure cons i s t s  of super-

+ +imposing u, b ,  and p onto t h e  s teady-s ta te  so lu t ion ,  s u b s t i t u t i n g  them i n t o  
t h e  general  equations (1)ts ( 6 ) ,  and l i n e a r i z i n g  t h e  equations with respec t  t o  
t h e  s m a l l  d is turbances 3,b, and p. Elimination of t he  va r i ab le s  ul, bl, 
and p leads t o  two simultaneous ordinary d i f f e r e n t i a l  equations f o r  b2 and 
u2. If hcp(x2) and B1$(x2) denote quan t i t i e s  proport ional  t o  the  amplitude 
functions of u2 and b2, respec t ive ly ,  t h e  following nondimensional simulta
neous equations a re  found t o  govern cp and $ 

c p l l T '  - 2&" + a.4cp = i&e[(Ux - c>(cp" - azcp) - u h  - A Z ( J ~ "  - azq)] (8) 

where x = xl/L, y = xz/L, c = el/%, ct = L k l ,  Re = &L/v i s  t h e  Reynolds 
number, Rem = a p o x L  i s  t h e  magnetic Reynolds number, and A2 = Bf/pU&, is  
t h e  Alfven number squared. The primes denote d i f f e r e n t i a t i o n  with r e s  e c t  t o  
y. 	 It i s  t o  be noted here t h a t ,  i n  t h e  absence of a magnetic f i e l d  (AS = 0 ) ,  
equation (8) reduces t o  t h e  ordinary Orr-Sommerfeld equation. 

Two new parameters en te r  i n t o  t h e  considerat ion of t h e  s t a b i l i t y  of t h e  
flow of an e l e c t r i c a l l y  conducting f l u i d ;  namely, t h e  magnetic Reynolds number, 
which i s  propor t iona l  t o  t h e  conduct ivi ty  of t he  f l u i d ,  and t h e  Alfven number, 

I which i s  proport ional  t o  t h e  s t r eng th  of t he  imposed magnetic f i e l d .  

Equations (8) and ( 9 )  and t h e  boundary condi t ions (appropriate  f o r  per
t f e c t l y  conducting planes which bound t h e  flow) 

y = +1 : c p = c p ' = $ = O  (10) 

cons t i t u t e  an. eigenvalue problem, which, f o r  a, Re, R%, and A' f ixed ,  con
sists of determining c i n  order t o  s a t i s f y  t h e  boundary conditions.  

E a r l i e r  t reatments  of the eigenvalue problem have considered t h e  l imi t ing  
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cases  Rem << 1 ( r e f .  1)or Rem >> 1 (ref. 2 ) .  I n  both l imi t ing  cases,  t h e  
governing equations can be s impl i f ied  somewhat. The r e s u l t i n g  s impl i f ied  equa
t i o n s  a r e  more amenable t o  so lu t ion  than  t h e  coupled equations (8) and (9 ) .  
However, if it i s  proposed t o  examine t h e  behavior of t h e  so lu t ions  of equa
t i o n s  (8) and ( 9 )  between t h e  l i m i t i n g  values  of Rem << l and Rem >> l, t h e  
complete s e t  of equat ions must be considered. 

Simplified Disturbance Equations 

The assumption underlying t h e  s impl i f ied  treatment of t h e  eigenvalue prob
lem i n  reference 1w i l l  now be examined. For many e l e c t r i c a l l y  conducting 
f l u i d s  or s l i g h t l y  ionized gases used i n  labora tory  experiments, Rem i s  
usua l ly  very s m a l l .  However, t h e  assumption Rem << 1 i s  by i t s e l f  not suf
f i c i e n t  t o  der ive S t u a r t ' s  form of t h e  dis turbance equations.  S t u a r t ' s  simpli
f i e d  disturbance equat ion can be obtained from equations (8) and (9)  by f o l 
lowing t h e  method of Ta t sumi  (ref. 3); namely, e l imina t ion  of cp, making t h e  
t ransformation 8 = $ I '  - CL

2$, and performing the  l imi t ing  process Rem + 0 
but A2Rem f i n i t e .  These s t e p s  r e s u l t  i n  t h e  following equation f o r  8 :  

+ a40O f r r f  - 2 ~ ~ ~ 0 "  = iaRe [(Ux - c ) ( 8 "  - a20) - U i 0  f- id2Rem0] 

The boundary condi t ions f o r  equation (11)follow from equations (8) and (9)  
and equation (10) i f  t h e  l i m i t i n g  form of these  equations i s  considered. The 
boundary condi t ions are 

The transformation and subsequent l imi t ing  process c l e a r l y  show t h e  nature of 
t he  assumptions underlying t h i s  simpler eigenvalue problem. I n  terms of physi
c a l  p roper t ies ,  t h e  assumptions a r e  the  flow of a f l u i d  of low conduct ivi ty  and, 
i n  addi t ion ,  under a very s t rong  magnetic f i e l d .  It i s  t o  be noted here t h a t  
t h e  quant i ty  A2Rem = oBfL/pY, E N i s  r e f e r r e d  t o  as t h e  magnetic i n t e r a c t i o n  
parameter. When t h i s  parameter i s  neg l ig ib ly  s m a l l ,  equation (11)is  i d e n t i c a l  
t o  the  Orr-Somerfeld equation. Other p rope r t i e s  of t h i s  extreme l imi t ing  case 
a r e  t h a t  t he  two parameters A2 and Rem have been collapsed i n t o  a s ingle
parameter, N = A2Rem, and t h a t  t h e  order of t h e  coupled d i f f e r e n t i a l  system 

(eqs.  (8)  and ( 9 ) )  has been reduced from six t o  four .  Also the  s i x  boundary 
condi t ions (eq. (10))  have been used i n  conjunction with equation ( 9 )  t o  fomu
l a t e  t h e  four  boundary condi t ions (eq. (12)) f o r  t h e  case of t h e  i n f i n i t e l y  
conducting w a l l .  

Numerical Solut ion of Eigenvalue Problem 

The numerical so lu t ion  of t h e  eigenvalue problems formulated w i l l  now be 
considered. The general  method used i s  qui te  analogous t o  the  method estab
l i s h e d  i n  reference 5 f o r  solving the  Orr-Sommerfeld equation; therefore ,  it 
w i l l  be s u f f i c i e n t  t o  give only a b r i e f  account of t h e  s t eps  required t o  gen
e r a l i z e  t h e  e s t ab l i shed  method i n  order t o  handle t h i s  problem. Furthermore, 
s ince equation (11)i s  a l i m i t i n g  form of equations (8) and (S), t h e  present  
account w i l l  be concerned with the  more general  system (eqs.  (8)  and ( 9 ) )  
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toge ther  with the  boundary conditions of equation (10). 

Before descr ibing t h e  numerical method, a s impl i f i ca t ion  of t h e  problem, 
which halves t h e  range of in tegra t ion ,  should be pointed out.  This s impl i f ica
t i o n  i s  based on t h e  observation t h a t  the disturbances i n  equations (8) and ( 9 )  
can be separated i n t o  even and odd funct ions,  s ince t h e  var iab le  coe f f i c i en t s  
i n  these equations,  namely Ux and U s ,  a r e  even funct ions of y. I n  ordinary 
hydrodynamic s t a b i l i t y  theory,  t he  even solut ion,  which has t h e  simpler flow 
pa t t e rn ,  usua l ly  gives a lower minimum c r i t i c a l  Reynolds number and w i l l  be t h e  
so lu t ion  examined herein.  This s impl i f ica t ion  enables one t o  consider only 
even so lu t ions  i n  half of t h e  channel through introduct ion of appropriate  sym
metry conditions a t  y = 0. The new boundary conditions f o r  equations (8) and 
( 9 )  a r e  

y = 0 : cp '  = q" '=  $ 1  = 0 (13) 

y = l : c p = c p ' = $ = O  (14) 

The approach t o  t h e  eigenvalue problem f o r  f ixed  a,  Re, AL,  and Re, 
used here in  i s  t o  f i n d  values  of c = cr + i c i  (eigenvalues) f o r  which equa
t i o n s  (8) and ( 9 )  have so lu t ions  (eigenfunct ions)  t h a t  s a t i s f y  the  boundary 
conditions equations (13) and (14) .  

I n  order t o  f i n d  an eigenvalue, t h e  following i t e r a t i v e  procedure i s  car
r i e d  out.  A t r i a l  so lu t ion  of equations (8)  and ( 9 )  i s  obtained by numerical 
in tegra t ion .  I n  order t o  in t eg ra t e  numerically, add i t iona l  boundary values a r e  
spec i f ied  a t  both boundaries y = 0 and y = 1, and a value of c i s  speci
f i e d .  Then both i n t e g r a l s  a r e  stepped i n  toward the  middle y = 112.  The addi
t i o n a l  boundary values and the  eigenvalue c have t o  be adjusted i n  order t o  
match t h e  so lu t ions  i n  t h e  middle. After  a t r i a l  in t eg ra t ion ,  subsequent 
boundary values and eigenvalues a re  automatical ly  ca lcu la ted  by the  Newton-
Raphson technique of f ind ing  successive approximations. 

The var ious elements t h a t  en te r  i n t o  the  preceding i t e r a t i v e  procedure w i l l  
now be put forward. Instead of solving equations (8)  and ( 9 )  as they  stand, a 
system of second-order d i f f e r e n t i a l  equations i s  formulated by introducing t h e  
disturbance v o r t i c i t y  amplitude func t ion  s = cp" - a2(p. I n  terms of t h e  v o r t i 
c i t y  amplitude, t he  system (eqs.  (8)  and ( 9 ) )  goes over t o  

2cpl' =acp + s  (15) 

= a'$ + iaRem[(ux - e ) +  - (p] (16) 

s f '  = a2s + iu.,Re[(ux - c > s  - u;(p - A ~ ( + "  - a'$)] ( 1 7 )  

I n  order t o  obta in  a system of equations i n  which der iva t ives  of t h e  dependent 
var iab les  do not appear on t h e  r i g h t  s ide ,  +" i s  eliminated from equation (17)  
by means of equation (16)  giving 

s" = a2s  + ia,Re[(Ux - c ) ( s  - i a N $ )  - (U; - iaN)cp] (18) 
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where 

N = A2Rem 

Equations (15), (161, and (18) are solved sub jec t  t o  the boundary conditions 
(eqs. (13) and (14 ) )  t h a t  employ the de . f in i t i on  of t h e  v o r t i c i t y  amplitude 
function. 

For a forward s o l u t i o n  ( y  increasing)  s t a r t i n g  a t  y = 0, t h e  i n i t i a l  
values are spec i f i ed  according t o  t h e  following table 

y = o :  

For a backward so lu t ion  ( y  decreasing) s t a r t i n g  a t  y = 1, t h e  i n i t i a l  
values are 

The add i t iona l  boundary values t h a t  have t o  be spec i f i ed  i n  order t o  i n t e g r a t e  
numerically a r e  those enumerated i n  t h e  second row of each t a b l e .  The condi
t i o n  cp(0) = 1 i s  a normalizing condition and f i x e s  t h e  s i z e  of t h e  whole so
lu t ion .  With t h e  preceding boundary values spec i f i ed  and a value of c speci
f i e d ,  t r i a l  so lu t ions  of equations (15), (16) ,  and (18) are obtained. Next, 
t h e  process of matching a t  a common point i s  c a r r i e d  out. The matching point  
w a s  taken t o  b e  y = l / 2  t o  equalize the  numerical e r r o r s  t h a t  grow i n  propor
t i o n  t o  t h e  number of i n t eg ra t ion  s t eps  taken. A t  t h e  matching point,  t he  so
l u t i o n  must be continuous. The requirements of con t inu i ty  lead t o  s i x  condi
t i o n s  t h a t  have t o  be s a t i s f i e d  a t  y = 1/2 .  The s i x  q u a n t i t i e s  S ( O ) ,  q(O), 
s ( l ) ,  s'(l), $'(l), and c have t o  be adjusted i n  order t o  s a t i s f y  these  con
d i t i ons .  Let t h e  d i f f e rence  between the  forward and backward so lu t ions  eval
uated a t  y = 1 / 2  be designated by g i ( i  = 1 . . . 6)  and s e t  up a correspon
dence between the differences and the  various funct ions according t o  t h e  f o l 
lowing t a b l e  : 

Now, t h e  gi depend on t h e  ad jus t ab le  parameters ( the  a d d i t i o n a l  boundary con
d i t i o n s  and e ) .  The Newton-Raphson method i s  used t o  f u l f i l l  t h e  condition of 
con t inu i ty  a t  t h e  matching point  ( i . e .  , a l l  gi = 0) .  

For ease i n  wri t ing,  t h e  various ad jus t ab le  parameters a r e  designated ac
cording t o  t h e  following scheme: 
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If t h e  chosen values zi produce a so lu t ion  that  gives a l l  g as approxi
mately zero, a b e t t e r  approximation is  obtained by s t a r t i n g  wi%h zi + hi. 
The quan t i t i e s  hi a r e  so lu t ions  of t h e  equations 

The p a r t i a l  der iva t ives  agi/a,j a r e  obtained by solving add i t iona l  i n i t i a l -
value problems. All t he  p a r t i a l  der iva t ives  with respect  t o  t h e  add i t iona l  
boundary conditions z i ( i  = 1 . . . 5)  can be obtained by solving equations 
(15), (16)  and (18) with appropriate  i n i t i a l  conditions s ince these  equations 
a r e  l i n e a r .  For example, der iva t ives  w i t h  respec t  t o  s ( 0 )  of the  var iab les  i n  
t he  forward in t eg ra t ion  a r e  obtained by solving equations (15), (16), and (18) 
s t a r t i n g  a t  y = 0 w i t h  i n i t i a l  conditions given according t o  t h e  following 
t a b l e  : 

y = o :  Ef!lEEl0 0  1 0  0 0  

For t h e  backward in t eg ra t ion ,  the  var iab les  a r e  taken t o  be independent of 
s ( 0 ) .  For der iva t ives  with respec t  t o  c y  a d i f f e r e n t  system of equations has 
t o  be solved. This system i s  obtained by p r t i a l  d i f f e r e n t i a t i o n  of t h e  terms 
i n  equations (15), (16), and (18) with respec t  t o  e. The quan t i t i e s  

s a t i s f y  the  system of equations 

cpl = a2cpc + sC (20) 

q = a.2 + iaRem[(Ux - C)$C - cpc - If)] (21) 

si = a'sc + iaRe[(Ux - c ) ( s ,  - i a N q C )  - (UG - i d ) c p ,  - ( s  - iaN$,] ( 2 2 )  

The appropriate  i n i t i a l  condi t ions f o r  equations (20)  t o  ( 2 2 )  a r e  homogeneous 
i n i t i a l  conditions f o r  both the  forward and backward in tegra t ions .  

After obtaining a t r i a l  so lu t ion  and the  var ious p a r t i a l  de r iva t ives ,  
equation (19) can be solved f o r  the correct ions.  Successive appl ica t ions  of 
t h i s  procedure should converge t o  an eigenvalue e. 

The procedure just out l ined  f o r  f ind ing  an eigenvalue c f o r  a, Re, A', 
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Present method 

Fourth- and sixth-order

and Rem f i x e d  w a s  programed f o r  solu
t i o n  on t h e  I B M  7094 computer located 
a t  t h e  L e w i s  Research Center. 

I n  reference 5, t h e  question of 
t h e  accuracy and r a t e  of convergence of 
t h e  method i s  discussed with regard t o  
so lu t ions  of t h e  Orr-Sommerfeld equa
t i o n .  Also, s eve ra l  s impl i f ica t ions  
a r e  pointed out t h e r e  t h a t  reduce t h e  
amount of labor  t h a t  i s  required i n  t h e  
app l i ca t ion  of t h e  method. 

Carrying out t h e  foregoing proce
dure f o r  a system of second-order 
equations enables one t o  obta in  exact 
numerical so lu t ions  of equations (8) 
and (9),  and equation (11). 

SOLUTIONS 
Mzgnetic interaction parameter, N 

Solut ions f o r  Re, << 1 
Figure 1. - M i n i m u m  cr i t ical  Reynolds number. 

A comparison w i l l  now be made of 
t he  exact numerical so lu t ions  Of equations (8 )  and (9), t he  s ixth-order  SYS

tern; t he  exact numerical so lu t ions  of equation (ll), the  fourth-order  system; 
and S t u a r t ' s  asymptotic so lu t ion  of t h e  fourth-order  system. This comparison 
i s  made under the  condi t ions t h a t  should s a t i s f y  t h e  assumptions made by S tua r t  
i n  going from the  s ixth-order  system t o  t h e  fourth-order  system. These condi
t i o n s  would correspond t o  t h e  flow of mercury with a magnetic Prandt l  number 

For a Reynolds number of lo4,  t h e  value of t he  magneticPrm of 1.5~10-~. 
Reynolds number would be about 1.5~10-3. 

Figure 1 shows t h e  minimum c r i t i c a l  Reynolds number as a funct ion of t he  
in t e rac t ion  parameter N corresponding t o  t h e  so lu t ions  of t.he th ree  eigenvalue 
problems. The s igni f icance  of t he  minimum c r i t i c a l  Reynolds number i s  t h a t  a l l  
disturbances w i l l  be damped i n  flows with Reynolds numbers below the  minimum 
c r i t i c a l  value. The exact  numerical so lu t ions  of t h e  s i x t h - and fourth-order 
systems y ie ld  i d e n t i c a l  r e s u l t s .  Thus, it can be in fe r r ed  t h a t  S t u a r t ' s  trunca
t i o n  from the  s ixth-order  t o  t h e  fourth-order  system i s  j u s t i f i e d  when 
Rem << 1. 

Also shown i n  f igu re  1a r e  S t u a r t ' s  r e s u l t s  f o r  t h i s  case.  The difference 
i n  t h e  values of Recr a t  the  same value of t h e  i n t e r a c t i o n  parameter i s  due 
only t o  the  d i f fe rence  i n  the  methods used t o  solve equation (11). The r e s u l t s  
obtained by Stuar t  d i f f e r  from those obtained by the  present  method by as much 
as 30 percent.  Furthermore, t he  value of Recr obtained by the  present  method 
f o r  N = 0, i n  which case equation (11)reduces t o  the  Orr-Sommerfeld equation, 
agrees with the  value of Recr, which Thomas ( r e f .  6 )  obtained by solving t h e  
Orr-Sommerf e l d  e quat ion. 
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Reynolds number, Re 
Figure 2. - Neutral  stabil ity diagrams for very large magnetic Reynolds numbers ( f rom 

ref. 2). Al fven number, 0.08. 

Solutions f o r  Re, Not Small 

The so lu t ion  of t h e  complete eigenvalue problem corresponding t o  t h e  d i f 
f e r e n t i a l  equations (8)  and ( 9 )  ( i . e . ,  t h e  s ixth-order  system) and boundary 
conditions w i l l  now be discussed f o r  t h e  case where Rem i s  not r e s t r i c t e d  t o  
be s m a l l .  The case Rem >> 1w a s  solved by Velikhov by obtaining asymptotic 
solut ions of equations (8) and ( 9 )  a t  l a rge  values of &e and &e,- The r e 
s u l t s  obtained by Velikhov f o r  a n  Alfven number, A = 0.08, a r e  shown i n  f i g 
ure 2.  A s  may be seen, t h e  minimum c r i t i c a l  Reynolds numbers a r e  considerably 
higher than those f o r  Rem << 1 shown i n  f i g u r e  1. Hence, it could be con
cluded t h a t  t h e  s t a b i l i z i n g  e f f e c t  i s  enhanced as Rem i s  increased. However, 
as can be seen from f i g u r e  2 ,  t h e  higher Rem y i e l d  t h e  lower Recr. A s  
pointed out by Ta t sumi  ( re f .  3) ,  it seems probable t h a t  t h e r e  e x i s t s  some value 
of Rem above which t h e  r o l e  of conductivity as a s t a b i l i z i n g  agent i s  r e 
versed. From t h e  var ious f a c t o r s  considered subsequently and t h e  r e s u l t s  of 
t he  next s ec t ion  on t h e  badlance of disturbance energy, it appears t h a t  t h e  con
d u c t i v i t y  reverses  i t s  r o l e  as a s t a b i l i z i n g  agent a t  values of Rem of order  
un i ty .  

The question of r e v e r s a l  of t h e  s t a b i l i z i n g  e f f e c t  of conductivity i s  ex
amined by f i x i n g  Re and a, and determining t h e  v a r i a t i o n  of C i  f o r  i n 
creasing Re, i n  numerical so lu t ions  of equations (8) and ( 9 ) .  A d e s t a b i l i z 
ing  e f f e c t  of increasing Rem w i l l  be evidenced by c i  increasing. This 
would be equivalent t o  Velikhov’s ca l cu la t ed  decrease of Recr as Rem i s  i n 
creased. Velikhov, however, made h i s  ca l cu la t ions  a f t e r  passing t o  the  l i m i t  
of l a rge  Re, and hence could not give an  ind ica t ion  of when t h e  conduct ivi ty  
reversed i t s  r o l e  as a s t a b i l i z i n g  agent. I n  t h e  present  study, on t h e  other  
hand, t h e  e n t i r e  range of Rem from Rem << 1 t o  Re, >> 1 has been i n v e s t i 

t gated by varying t h e  magnetic P rand t l  number. 

The r e s u l t s  of t he  present  ca l cu la t ions  a r e  shown i n  figure 3. These c a l 
cu la t ions  were c a r r i e d  out a t  a f i x e d  po in t  i n  t h e  a ,  R e  plane; t h a t  i s ,  
a = 1, Re = 9000. Since Re w a s  held constant,  each value of Rem shown i n  
f igu re  3 corresponds t o  a d i f f e r e n t  magnetic F’randtl number, Pr, 
(Pr, = Rem/Re = pov).  Scales  of both q u a n t i t i e s  Re, and Pr, a r e  shown 
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Figure 3. - Effect of increasing magnetic Reynolds number. Nondimensional wave number, 1; Reynolds number, Woo. 

as abscissae i n  f igu re  3, where ci, t h e  time ampl i f ica t ion  f a c t o r  i s  shown as 
the ordinate .  Curves are shown both f o r  constant values  of t h e  magnetic i n t e r 
ac t ion  parameter N, and f o r  t he  Alfven number A, which i s  d i r e c t l y  propor
t i o n a l  t o  t h e  magnetic f i e l d  s t rength.  

The r e s u l t s  presented i n  f igu re  3 may be in t e rp re t ed  i n  the  following 
manner: Imagine, f o r  example, a flow i n  a given channel where the  f l u i d  v i s 
c o s i t y  and flow v e l o c i t y a r e f i x e d  and t h e  flow i s  subjected t o  disturbances of 
a given wavelength. This corresponds t o  a f ixed poin t  i n  t h e  a,, Re plane. 
I n  t h i s  example, t he  conduct ivi ty  of t he  f l u i d  and t h e  s t r eng th  of t he  imposed 
magnetic f i e l d  can be a l t e r e d  a t  w i l l .  The point  a, = 1, Re = 9000 i s  an  
unstable point  i n  the  absence of a magnetic f i e l d ,  as shown by the  curve A = 0, 
N = 0 i n  f igu re  3. 

To be noted immediately i s  t h a t ,  f o r  an  e l e c t r i c a l l y  conducting f l u i d ,  t he  
presence of any magnetic f i e l d  tends t o  reduce t h e  ampl i f ica t ion  r a t e  below 
t h a t  obtained i n  the  absence of a magnetic f i e l d .  This i s  t r u e  regard less  of 
whether the  magnetic Reynolds number i s  la rge  or s m a l l .  For a given magnetic 
Reynolds number, t he  damping r a t e  r e l a t i v e  t o  t h e  nonmagnetic case increases  
monotonically with an increase i n  magnetic f i e l d  s t rength ;  f o r  a given magnetic 
f i e l d  s t rength  (represented by constant A i n  our example) t he  damping r a t e  
increases  monotonically with increasing in t e rac t ion  parameter. The magnitudes 
of these  va r i a t ions ,  however, depend on whether t he  magnetic Reynolds number i s  
s m a l l  o r  l a rge .  
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For a constant i n t e rac t ion  parameter N, t h e  v a r i a t i o n  of amplif icat ion 
r a t e  c i  with magnetic Reynolds number i s  negl ig ib le  u n t i l  Rem increases  
pas t  order un i ty ,  whence it increases  sharply r e l a t i v e  t o  t h e  value f o r  
Re, << 1 and gradual ly  approaches t h e  value i n  the  nonmagnetic case as Re, 
becomes very large.  The present  r e s u l t s  f o r  Rem << 1 are  cons is ten t  with 
those obtained from t h e  fourth-order  system (eq. (11)).It i s  s e e n t h a t  c i  
depends only on t h e  s ing le  parameter N when Re, << 1, but va r i e s  a l s o  w i t h  
Rem when Re, exceeds order  uni ty .  As Rem increases  a t  constant N, t he  
growth r a t e s  increase,  but  a r e  always l e s s  than  i n  the  nonmagnetic case.  

For constant A, which i n  our example i s  in t e rp re t ed  as constant magnetic 
f i e l d ,  increasing t h e  conduct ivi ty  always gives damping. However, t he re  i s  
s u b s t a n t i a l  increase i n  t h e  damping r a t e  with the  magnetic Reynolds number when 
Rem i s  s m a l l ;  f o r  la rge  magnetic Reynolds number, an  increase i n  Rem tends 
t o  increase t h e  damping only s l i g h t l y .  

A more de t a i l ed  physical  descr ip t ion  of t he  nature of t he  s t a b i l i t y  prob
lem as Rem increases  pas t  un i ty  may be obtained by examining the  terms i n  a 
disturbance energy balance. This examination i s  made subsequently. 

The general  s i t u a t i o n  here i n  which two t r anspor t  p roper t ies  en te r ,  
namely, the  e l e c t r i c a l  conduct ivi ty  and the  v i scos i ty ,  i s  qui te  analogous t o  
t h e  s i t u a t i o n  i n  which the  v i s c o s i t y  coe f f i c i en t  alone en te r s .  I n  ordinary 
hydrodynamic s t a b i l i t y ,  it i s  known t h a t  viscous mechanisms a r e  s t a b i l i z i n g  
( the  d i s s ipa t ion )  as long as the  v i s c o s i t y  i s  la rge  enough (Re s m a l l  enough). 
It i s  only when t h e  v i s c o s i t y  becomes s m a l l  enough (Re la rge  enough) t h a t  
viscous mechanisms come i n t o  p lay  which des t ab i l i ze  the  r e s u l t i n g  motion by 
providing a means of t r a n s f e r r i n g  energy t o  the  disturbance motion through the  
Reynolds s t r e s s .  I n  magnetohydrodynamic s t a b i l i t y ,  t h e  r o l e  played by t h e  r e 
s i s t i v i t y  ( t h e  r ec ip roca l  of t he  conduct ivi ty)  i s  analogous t o  the r o l e  played 
by the  v i s c o s i t y  i n  ordinary hydrodynamic s t a b i l i t y ;  t h a t  i s ,  a t  s m a l l  Rem 
(high r e s i s t i v i t y )  t h e  conduct ivi ty  0 i s  pr imari ly  s t a b i l i z i n g  because of t h e  
predominance of t he  jou le  heat ing.  A t  l a rge  Rem, t h e  conduct ivi ty  tends t o  be 
des t ab i l i z ing  under c e r t a i n  conditions because the re  i s  a mechanism tha t  can 
t r a n s f e r  energy t o  t h e  disturbance motion. 

DISTURBANCE ENERGY BALANCE 

Formulation of a disturbance energy balance and subsequent examination of 
t h e  various cont r ibu t ions  t o  the  r a t e  of change of disturbance energy gives an 
in s igh t  i n t o  the  mechanics of t he  disturbance motion and enables one t o  iden t i fy  
t h e  var ious processes t h a t  a r e  operating. 

The s t a r t i n g  poin t  f o r  t he  der iva t ion  of t h e  disturbance energy balance 
equation a r e  equations (A9) t o  (Al2 ) .  Multiplying t h e  terms i n  equations (A9) 
by u,, (AlO)by uy, (All) by AZbx, and (Al.2) by A2by, adding, and perform
ing  some a lgebra ic  manipulations y i e ld  ( fo r  B, = 1): 
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D- e = -
Rem 

2 a  (bxux + byuy)
Dt 

( 2 3 )  

where 

and 

The quant i ty  E i s  the  dimensionless k i n e t i c  energy of t he  f l u i d  p lus  t h e  
energy of t h e  magnetic f i e l d ,  a l l  r e fe r r ed  t o  t h e  k i n e t i c  energy of t h e  mean 
flow. The quant i ty  < = au /ax - dux/ay i s  t h e  dimensionless v o r t i c i t y  of t he  
disturbance flow, and j = xby/dx - dbx/dy i s  t h e  dimensionless c u r l  of t he  
disturbance magnetic f i e l d ,  which by Amperes l a w  i s  equal t o  t h e  disturbance 
e l ec t r  i c a l  current  densi ty .  

Equation ( 2 3 )  gives  the  time r a t e  of increase of t h e  disturbance energy 
(per un i t  volume) of a f l u i d  element t h a t  moves with the  bas ic  flow. The terms 
i n  t h i s  equation are to be in tegra ted  over a c e l l  t h a t  extends across  t h e  chan
ne l  i n  t h e  y-d i rec t ion  and along t h e  channel f o r  a dis tance of wavelength. 
A l l  terms i n  the  braces i n  equation ( 2 3 )  vanish e i t h e r  because a disturbance 
quant i ty  vanishes a t  t h e  boundaries of t h e  flow f o r  t h e  in t eg ra t ion  across  the  
channel or because of pe r iod ic i ty  i n  the  d i r ec t ion  along t h e  channel. The 
equation giving the  time r a t e  of increase of energy of t he  disturbance motion 
i s  theref  ore : 

Of course, it i s  t h e  real  p a r t  of each disturbance amplitude t h a t  i s  required 
i n  equation (24).  

It i s  appropriate  a t  t h i s  time t o  i d e n t i f y  the  var ious f a c t o r s  on t h e  
r i g h t  s ide  of equation (24) ,  which con t r ibu te ' t o  t h e  r a t e  of change of t h e  d i s 
turbance energy. As i n  ordinary hydrodynamic s t a b i l i t y  theory,  t he re  appear 
t h e  Reynolds s t r e s s  term and the  viscous d i s s ipa t ion  term, the  f i r s t  and t h i r d  
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terms, r e spec t ive ly ,  on t h e  r i g h t  s ide  of i q m t i o n  (24). A s  i s  we l l  known: 
t h e  d i s s i p a t i o n  term i s  always s t a b i l i z i n g ,  and the  Reynolds s t r e s s  term can be 
e i t h e r  s t a b i l i z i n g  or des t ab i l i z ing .  The new temns t h a t  appear i n  t he  s t a b i l i t y  
of a conducting f l u i d  a r e  the  second and f o u r t h  t e r m .  The f c u r t h  term 
(-A2j2/Rem) can be i d e n t i f i e d  as jou le  heat ing and 2 - y L , z s  i n  the  energy balance 
equation i n  such a way t h a t  t h i s  term w i l l  always be s tabi lSzing.  The qua,nti.ty 
bxby i n  the  second term can be i d e n t i f i e d  as a component of the Maxwell s t r e s s  
t enso r  of electromagnetic theory.  The question of whether t h i s  new term i s  
s t a b i l i z i n g  o r  d e s t a b i l i z i n g  can be answered by s o l ~ i n gt h e  eigenvalue problem 
and computing the  eigenfunctions.  

The disturbance q u a n t i t i e s  on t h e  r i g h t  s ide  of equation ( 2 4 )  can be ex
pressed i n  terms o f  t he  complex amplitude funct ions cp and. $ by means of t h e  
r e l a t i o n s  

where R l  denotes the  r e a l  p a r t  of t h e  complex quant i ty .  The i n t e g r a t i o n  with 
r e spec t  t o  x can be performed i n  equation ( 2 4 )  a f t e r  s u b s t i t u t i o n  of equa
t i o n s  (25) t o  (28). or neu-t.ra,l disturbances (ei  = 0) 

The range of i n t e g r a t i o n  i s  taken from y = 0 t o  l s ince  a l l  t h e  integrands 
a r e  even funct ions.  For other than n e u t r a l  dis turbances,  it i s  only necessary 
to mult iply t h e  r i g h t  s ide  of equation ( 2 9 )  by f a c t o r  exp(2cscit) i n  order to 
ob ta in  t h e  time r a t e  of change of disturbance energy. 

I n  view of t h e  conclusion drawn i n  t h e  previous sec t ion  concerning the r o l e  
played by the conduct ivi ty  as a, s t a b i l i z i n g  agent,  it i s  of i n t e r e s t  t o  com
pare the  vari0u.s terms t h a t  contr ibxte  t o  the disturbance energy balance when 
Re, i s  small and when it i s  l a rge .  Figure 4 shows t h e  d . i s t r ibu t ion  across  
half  t h e  cha-nnel of t h e  electromagnetic terms i n  t h e  energy balance equati-on for 
t h e  two cases Rem = 0.00135 and 88.5 (01 = 0.0216 f o r  bo th) .  The a rea  under 
these curves r ep resen t s  t he  ne t  contr ibut ion t o  t he  r a t e  of increase of t he  
disturbance energy. For Re, = 0.001Y5, t h e  Maxrtrel.1 s t r e s s  i s  negl igible  and 
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F igure 4. - Maxwell stress and Joule dissipation. -'6y]- 8  
Nondimensional wave number, 1; Reynolds 0 .25 .M  .75 1.00 
number, 9000; magnetic interaction parameter, Normal f rom center of channel, y 
0.0216. 

Figure 5. - Reynolds stress and viscous dissipation. 
Nondimensional wave number, 1; Reynolds num
ber, 9000; magnetic interaction parameter, 0.0216. 

i s  not p lo t ted ,  but t he  jou le  d i s s ipa t ion  contr ibutes  s u b s t a n t i a l l y  t o  the  
s t a b i l i z a t i o n  of t he  motion ( the  area under the  curve being negative i n  t h i s  
ca se ) .  For Rem = 88.5, t he  Maxwell s t r e s s  becomes s ign i f i can t  and i s  de
s t a b i l i z i n g .  O f  course,  t he  joule heat ing i s  again s t a b i l i z i n g ,  but  t h e  con
t r i b u t i o n  i s  much l e s s  than i n  the previous case. 

Figure 5 shows the  d i s t r i b u t i o n  across  ha l f  t he  channel of t h e  hydrodyna
mic terms i n  the  energy balance equation f o r  t he  two cases.  The d i s t r i b u t i o n  
of t he  viscous d i s s ipa t ion  energy i s  very c lose ly  the  same for t he  two Re,
values, bu t ,  f o r  the  Reynolds s t r e s s  energy d i s t r ibu t ions ,  t he re  i s  l ess  a rea  
under t h e  curve for Re, = 88.5 than  f o r  Re, = 0.00135. However, t h i s  de
crease i n  production of disturbance energy by t h e  Reynolds s t r e s s  i s  o f f s e t  by 
the  des t ab i l i z ing  e f f e c t s  of t h e  decrease i n  the  joule  d i s s ipa t ion  and the  i n 
crease of disturbance energy by the  Maxwell stress ( f i g .  4) .  The net e f f e c t  of 
increasing t h e  conduct ivi ty  i s  then  a consequence of t he  balance between the  
Reynolds s t r e s s  mechanism on t h e  one hand ana t h e  joule  d i s s ipa t ion  and Maxwell 
stress mechanism on the  other  hand. This net e f f e c t  can be determined by e s t i 
mating t h e  a reas  under t h e  curves i n  f igu res  4 and 5. This comparison leads t o  
t he  r e s u l t  t h a t ,  a t  a f ixed  point  i n  the  a,Re plane, the  ne t  e f f e c t  of i n 
creasing the conduct ivi ty  N ( t he  magnetic i n t e rac t ion  parameter) constant i s  
des t ab i l i z ing  i n  agreement with the  r e s u l t s  presented i n  f igu re  3. A s  t he  Rem 
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i s  r a i s e d ,  t h e  behavior of t he  various terms i n  t h e  energy balance equation 

under the  conditions mentioned previously can be summarized as follows: 

Reynolds s t r e s s :  s t a b i l i z i n g  i n  t h a t  t h e r e  i s  l e s s  production of disturbance 

energy; viscous d i s s ipa t ion :  neg l ig ib l e  change; Maxwell s t r e s s :  des t ab i l i z ing ,  

production of disturbance energy occurs only a t  high values of Re,; jou le  d i s  

s ipa t ion :  des t ab i l i z ing ,  t he  mount  of energy t h a t  can be d i s s ipa t ed  i s  r e 
duced as t h e  conduct ivi ty  i s  r a i s e d .  If N i s  not held constant but i s  allowed 
t o  increa,se as Re, increases ,  t h e  flow i s  again s t a b i l i z e d  as observed by 
Veliliov ( r e f .  2). 

I CONCLUSIONS 

The s t a b i l i t y  of plane magnetohydrodynamic channel f low with p a r a l l e l  mag
n e t i c  f i e l d  has been reexamined through exact numerical i n t e g r a t i o n  of t h e  
pe r t inen t  s ixth-order  system of disturbance equations,  subject  t o  appropriate 
boundary conditions.  The r e s u l t s  confirm t h a t  S t u a r t ' s  reduct ion of t h e  prob
lem t o  a fourth-order disturbance equation i s  v a l i d  f o r  magnetic Reynolds nwn
ber  s m a l l  compared with 1. However, S t u a r t ' s  asymptotic values a r e  about 

I 	
30 percent below t h e  present numerical r e s u l t s .  For magnetic Reynolds numbers 
of order 1 o r  g rea t e r ,  t he re  a r e  s i g n i f i c a n t  changes i n  t h e  s t a b i l i t y  charac
t e r i s t i c s .  This i s  borne out by a ca l cu la t ion  of t h e  various viscous and mag
n e t i c  contr ibut ions t o  t h e  r a t e  of change of disturbance energy. 

It i s  shown t h a t  t h e  r e s i s t i v i t y  e n t e r s  t h i s  problem i n  two ways: (1)it 
s e t s  up a time-independent Maxwell s t r e s s  t h a t  augments t h e  disturbance energy 
when it i s  of t h e  same s ign  as the  v o r t i c i t y  of t h e  bas i c  flow, and (2) through 
jou le  d i s s i p a t i o n  t h e  disturbance energy i s  decreased. For small r e s i s t i v i t y  
(Re, >> 1) t h e  former dominates, leading to a ne t  augmentation of disturbance 
energy, while for l a rge  r e s i s t i v i t y  (Re,  << I) t h e  d i s s i p a t i v e  e f f e c t  i s  
dominant. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, September 22 ,  1965. 
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APPENDIX - DERIVATION OF DISTURBANCE EQUATIONS 

Although the  disturbance equations used he re in  appear i n  the  l i t e r a t u r e  
(e .  g . ,  r e f .  3 ) ,  they  must be displayed i n  component form i n  order t o  formulate 
a disturbance energy balance equation. Since t h i s  form appears i n  t h e  process 
of  der iving the  disturbance equations,  a b r i e f  der iva t ion  of these  equations 
follows. 

The s t a r t i n g  point  f o r  t he  der iva t ion  i s  equations (1)to ( 6 ) .  Elimina
t i o n  of 3 from equations (1)and (3) r e s u l t s  i n  

where 

- - f +

B - Bn = p + -
21-10 

Since two-dimensional disturbances a re  being considered, only a two-dimensional 
magnetic fie+ld need+be considered. A second equation i s  obtained by the  el imi
nat ion of E and J from equations (2) t o  ( 4 )  with the  a i d  of equations (5)  
and ( 6 )  and r e s u l t s  i n  

The s t a b i l i t y  inves t iga t ion  i s  l imi ted  t o  mean flows t h a t  s a t i s f y  equation ( 7 ) .  

The disturbance equations a re  obtained by introducing a two-dimensional 
disturba,nce i n t o  equations (51, (6), ( A l ) ,  a.nd (AZ); t h a t  i s ,  l e t  

P ” P + P  

where the  lower-case quan t i t i e s  are s m a l l  per turba t ions  of the  bas ic  quant i ty .  
After t h i s  i s  accomplished and after subt rac t ing  out t he  bas ic  f l o w ,  t h e  d i s 
turbance equations a re  
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au1 + -1 V2bl 

where 


+ - +
B ’ b 
n = p + - 


P O  

It is convenient to cast the disturbance equations into nondimensional form by 
making the following replacement of variables: 

where L, G,and B are fixed reference dimensional quantities. The dis
turbance equations in nondimensional form are 
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- -  

where 

i s  the Alfven number squared 

rTnLRe = -
V 


i s  the  Reynolds number, and 

Rem = a p o h L  

i s  the magnetic Reynolds number. 

Besides these  bas ic  nondimensional quan t i t i e s ,  c e r t a i n  other  combinations 
of them a r e  o f t e n  used; namely, 

Prm = apov 

the  magnetic F’randtl number and 

the  magnetic i n t e r a c t i o n  parameter. The following r e l a t i o n s  apply: 

Re, = Pr, * Re 

and 

N = A2Rem 

The number of dependent var iab les  can be reduced by introducing a stream 
funct ion f o r  t he  disturbance v e l o c i t y  and a vector  p o t e n t i a l  f o r  the  magnetic 
f i e l d .  Let 

uy = a@ 
ax 
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a Y  
bx = ay 

b = - -a Y  
Y ax 

Subs t i tu t ion  of equat ions (A15) t o  (Al8)i n t o  equations (A9) t o  (Al2) l eads  
t o  t h e  following dis turbance equat ions:  

dUX 1 
Y y t  + UXYXY = - dY X -Y x + B QXy + -Rem ('YXX + 'Yyy) 

Elimination of fi between equations (A19) and (AZO) by c ross  d i f f e r e n t i a t i o n s  
leads  t o  

If the  form of t h e  dis turbance i s  taken t o  be 

Q = cp(y)exp[ia(x - et)]  (A241 
Y = +(y>exp[ia(x - e t ) ]  (A25 

equation (A23) becomes 

c p 1 1 1 1 - 2a2cptt + = i a e  {(ux - C > ( c p "  - a2cp) - u2cp - ~ 2 [ j ( + t 1  - az,i]} 

(A26 1 
where t h e  primes denote d i f f e r e n t i a t i o n  with respec t  t o  y, and equations (A21) 
and (A22) become 

- a'+ = i a e m [ ( U x  - e ) +  - %I (A271 

Equations (A21) and (A22) l ead  t o  a s ing le  independent equation s ince  equa
t i o n  ( A Z l ) ,  f o r  t h e  assumed form of t h e  dis turbance,  can be obtained from equa

2 1  
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t i o n  (A22) by d i f f e r e n t i a t i o n  w i t h  respec t  t o  y. 

Equations (A26) and (A27) are  t h e  f i n a l  form assumed by t h e  disturbance 
equations.  Since B1 i s  a constant ,  it i s  appropr ia te  t o  replace Bx by 
uni ty;  t h a t  i s ,  t h e  re ference  quant i ty  B i s  taken t o  be B1. This f i n a l  s t e p  
y i e lds  equations (8) and (9 ) .  
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